PlumX Metrics
Embed PlumX Metrics

Sulfate Acts as Phosphate Analog on the Monomeric Catalytic Fragment of the CPx-ATPase CopB from Sulfolobus solfataricus

Journal of Molecular Biology, ISSN: 0022-2836, Vol: 369, Issue: 2, Page: 368-385
2007
  • 20
    Citations
  • 0
    Usage
  • 25
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The crystal structure of the catalytic fragment of a Sulfolobus solfataricus P-type ATPase, CopB-B, was determined with a 2.6 Å resolution. CopB-B is the major soluble fragment of the archaeal CPx-ATPase CopB and is comprized of a nucleotide and a phosphorylation domain. In the crystalline state two molecules of CopB-B are in close contact to each other, although the presence of dimers in free solution could be ruled out by analytical ultracentrifugation. The overall architecture of CopB-B is similar to that of other P-type ATPases such as Ca-ATPase. Short peptide segments are linking the nucleotide binding to the phosphorylation domain. CopB-B exhibits 33% sequence identity (of 216 aligned residues) with the respective fragment of the Archaeoglobus fulgidus ATPase CopA. The CopB-B nucleotide-binding domain has the most primitive fold yet identified for this enzyme class. It is 24% identical to the nucleotide-binding domain of the disease-related Wilson ATPase ATP7B (80 structurally aligned residues). Structural superposition with Ca-ATPase suggests a putative nucleotide-binding site in CopB-B. The phosphorylation domain of CopB-B is structurally related to the corresponding part of Ca-ATPase in the anion-bound E2 state. In CopB-B crystals, a bound sulfate anion was identified at the phosphate-binding location. In solution state, the potential binding of CopB-B to phosphate was probed with 32 P i. Bound phosphate could be readily displaced by orthovanadate at submillimolar concentration as well as by sulfate at millimolar concentration. It is possible therefore to assign the structure of the sulfate-bound phosphorylation domain of CopB-B to a state related to the E2·P i intermediate state of the catalytic cycle.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know