Pre-Steady-State Kinetic Analysis of the Elongation of Amyloid Fibrils of β 2 -Microglobulin with Tryptophan Mutagenesis
Journal of Molecular Biology, ISSN: 0022-2836, Vol: 400, Issue: 5, Page: 1057-1066
2010
- 24Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- CrossRef24
- 23
- Captures45
- Readers45
- 45
Article Description
Amyloid fibrils elongate seed dependently, with preformed fibrils providing a template for propagation of amyloidogenic conformation. Most seeding experiments use relatively few seed fibrils in comparison with monomers, resembling steady-state enzyme kinetics. Pre-steady-state kinetics should also be useful for characterizing the elongation process. With β 2 -microglobulin (β 2 -m), a protein responsible for dialysis-related amyloidosis, we measured the pre-steady-state kinetics of fibril elongation at pH 2.5, conditions under which the monomer is largely unfolded. β 2 -m has Trp residues at positions 60 and 95. We used three single Trp mutants and fluorescence spectroscopy to study structural change upon fibril elongation. To focus on conformational change in monomers, we prepared seeds with a mutant without a Trp residue. At a fixed concentration of monomeric β 2 -m, the apparent rate of fibril elongation increased with an increase in the concentration of seeds and then saturated, suggesting the accumulation of a rate-limiting intermediate. Importantly, saturation occurred at a seed/monomer ratio of around 10, as expressed by the concentration of the monomer. Because the number of monomers constituting the seed fibrils is much larger than 10, the results suggest that the elongation process is limited by “non-active-site binding.” Spectral analysis indicated that, upon this non-active-site binding, both Trp60 and Trp95 are exposed to the solvent, and then only Trp60 is buried upon transition to the fibrils. We propose a new model of fibril elongation in which non-active-site binding plays a major role.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022283610006005; http://dx.doi.org/10.1016/j.jmb.2010.05.071; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77954620268&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/20595042; https://linkinghub.elsevier.com/retrieve/pii/S0022283610006005; https://dx.doi.org/10.1016/j.jmb.2010.05.071
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know