PlumX Metrics
Embed PlumX Metrics

Molecular Basis of the Functional Divergence of Fatty Acyl-AMP Ligase Biosynthetic Enzymes of Mycobacterium tuberculosis

Journal of Molecular Biology, ISSN: 0022-2836, Vol: 416, Issue: 2, Page: 221-238
2012
  • 40
    Citations
  • 0
    Usage
  • 87
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Activation of fatty acids as acyl-adenylates by fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis is a variant of a classical theme that involves formation of acyl-CoA (coenzyme A) by fatty acyl-CoA ligases (FACLs). Here, we show that FAALs and FACLs possess similar structural fold and substrate specificity determinants, and the key difference is the absence of a unique insertion sequence in FACL13 structure. A systematic analysis shows a conserved hydrophobic anchorage of the insertion motif across several FAALs. Strikingly, mutagenesis of two phenylalanine residues, which are part of the anchorage, to alanine converts FAAL32 to FACL32. This insertion-based in silico analysis suggests the presence of FAAL homologues in several other non-mycobacterial genomes including eukaryotes. The work presented here establishes an elegant mechanism wherein an insertion sequence drives the functional divergence of FAALs from canonical FACLs.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know