PlumX Metrics
Embed PlumX Metrics

Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers

Journal of the Mechanical Behavior of Biomedical Materials, ISSN: 1751-6161, Vol: 101, Page: 103447
2020
  • 32
    Citations
  • 0
    Usage
  • 80
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Dental resins filled with hydroxyapatite (HAp) nanoparticles have significantly revolutionized restorative dentistry offering advantages such as remineralization potential and increase of polymerization. However, these materials have limited radiopacity hindering the diagnosis of secondary caries. The present study investigated the development of a new radiopaque dental adhesive by incorporating novel pure strontium hydroxyapatite nanoparticles [Sr 10 (PO 4 ) 6 (OH) 2, SrHAp] synthesized by a simple hydrothermal method. Strontium phosphates were prepared using co-precipitation (SrHAp0h) and hydrothermal treatment for 2 and 5h (SrHAp2h and SrHAp5h). The crystallinity, crystallite size, textural and morphology features of the nanoparticles were characterized by XRD, FT-IR, micro-Raman and TEM. Strontium hydroxyapatite (SrHAp) or calcium hydroxyapatite (HAp) nanoparticles were then incorporated (10 wt%) into an adhesive resin of a commercial three-step etch-and-rinse adhesive to evaluate the radiopacity of disk-shaped specimens, degree of conversion (DC) assessed by FT-IR and mechanical properties by three-point bending test. The unfilled adhesive was used as negative control. While SrHAp0h and SrHAp2h resulted a phase mixing, the pure and highly crystalline phase of strontium hydroxyapatite free of calcium was obtained with 5h hydrothermal treatment (SrHAp5h). The TEM images revealed nanorods morphology for SrHAp5h. SrHAps incorporated into adhesive showed higher radiopacity, no alteration on DC despite slightly reducing the mechanical properties. Although the mechanical properties are slightly impaired, incorporation of SrHAp nanoparticles offers potential method to improve radiopacity of restorative dental resins, easing the tracking of actual remineralization effects and enabling diagnosis of recurrent caries.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know