Development and validation of osteoligamentous lumbar spine under complex loading conditions: A step towards patient-specific modeling
Journal of the Mechanical Behavior of Biomedical Materials, ISSN: 1751-6161, Vol: 110, Page: 103898
2020
- 12Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- Captures32
- Readers32
- 32
Article Description
Finite-element models are used to investigate the biomechanics of normal, diseased and surgically fused spines. Generally, nominal spine geometries are used to understand the biomechanics, which has created a need for a technique that develops patient-specific lumbar spine geometries. In the current study, a lumbar spine (T12-Sacrum) was developed using a technique that facilitates geometrical morphing, which assists in incorporating patient-specific morphologies into the model. The model evaluations can be used to propose a biomechanically suitable lumbar spine fusion procedure for patients. This study focuses on the validation of the base model under pure-moment, pure-compression and combined-compression-and-moment loadings. Experimental data from the literature were used to validate the response of the model. The L1-L2, L2-L3, L3-L4, L4-L5 and L5-sacrum segments demonstrated a range of motion of 4.5, 4.0, 5.4, 5.0 and 8.9° in flexion; 3.0, 2.5, 3.6, 3.1 and 5.2° in extension; 6.2, 5.8, 6.4, 5.0 and 6.1° in right and left lateral bending; and 2.9, 3.0, 2.9, 1.9 and 2.5° in right and left axial rotation, all under 10 Nm pure-moment loading. The L1-L2, L2-L3, L3-L4, L4-L5 and L5-sacrum discs demonstrated compressions of 1.1, 1.4, 1.6, 1.4 and 0.9 mm under 1200 N follower- or pure-compression loading. With the combined loading of 280 N follower and 7.5 Nm moment, the L1-L5 model demonstrated 11.7, 7.2, 18.3 and 10.4 degrees of range of motion in flexion, extension, bending and rotation, respectively. The model results were in good agreement with corridors from six different experimental studies and can be used for future clinical studies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1751616120304525; http://dx.doi.org/10.1016/j.jmbbm.2020.103898; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85087592453&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32957203; https://linkinghub.elsevier.com/retrieve/pii/S1751616120304525; https://dx.doi.org/10.1016/j.jmbbm.2020.103898
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know