Microstructure and some magnetic properties of bulk amorphous (Fe 0.61 Co 0.10 Zr 0.025 Hf 0.025 Ti 0.02 W 0.02 B 0.20 ) 100−x Y x ( x =0, 2, 3 or 4) alloys
Journal of Magnetism and Magnetic Materials, ISSN: 0304-8853, Vol: 324, Issue: 4, Page: 540-549
2012
- 35Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Microstructure, revealed by X-ray diffraction, transmission electron microscopy and Mössbauer spectroscopy, and magnetic properties such as magnetic susceptibility, its disaccommodation, core losses and approach to magnetic saturation in bulk amorphous (Fe 0.61 Co 0.10 Zr 0.025 Hf 0.025 Ti 0.02 W 0.02 B 0.20 ) 100−x Y x ( x =0, 2, 3 or 4) alloys in the as-cast state and after the annealing in vacuum at 720 K for 15 min. are studied. The investigated alloys are ferromagnetic at room temperature. The average hyperfine field induction decreases with Y concentration. Due to annealing out of free volumes its value increases after the heat treatment of the samples. The magnetic susceptibility and core losses point out that the best thermal stability by the amorphous (Fe 0.61 Co 0.10 Zr 0.025 Hf 0.025 Ti 0.02 W 0.02 B 0.20 ) 97 Y 3 alloy is exhibited. Moreover, from Mössbauer spectroscopy investigations it is shown that the mentioned above alloy is the most homogeneous. The atom packing density increases with Y concentration, which is proved by the magnetic susceptibility disaccommodation and approach to magnetic saturation studies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304885311006019; http://dx.doi.org/10.1016/j.jmmm.2011.08.038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80054052497&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0304885311006019; https://api.elsevier.com/content/article/PII:S0304885311006019?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0304885311006019?httpAccept=text/plain; https://dx.doi.org/10.1016/j.jmmm.2011.08.038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know