Magnetic elastomers as specific soft actuators – predicting particular modes of deformation from selected configurations of magnetizable inclusions
Journal of Magnetism and Magnetic Materials, ISSN: 0304-8853, Vol: 591, Page: 171695
2024
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Amongst the various fascinating types of material behavior featured by magnetic gels and elastomers are magnetostrictive effects. That is, deformations in shape or changes in volume are induced from outside by external magnetic fields. Application of the materials as soft actuators is therefore conceivable. Mostly, straight contraction or extension of the materials along a certain direction is discussed and investigated in this context. Here, we demonstrate that various further, different, higher modes of deformation can be excited. To this end, different spatial arrangements of the magnetizable particles enclosed by the soft elastic matrix, which constitute the materials, need to be controlled and realized. We address various different types of spatial configurations of the particles and evaluate resulting types of deformation using theoretical tools developed for this purpose. Examples are sheet-like arrangements of particles, circular or star-shaped arrangements of chain-like aggregates, or actual three-dimensional star-like particle configurations. We hope to stimulate with our work the development of experimental design and engineering methods so that selected spatial particle arrangements in magnetic gels and elastomers can be put to reality. Overall, we in this way wish to promote the transfer of these promising class of materials to real-world applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304885323013458; http://dx.doi.org/10.1016/j.jmmm.2023.171695; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85183096659&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0304885323013458; https://dx.doi.org/10.1016/j.jmmm.2023.171695
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know