Stretch-independent magnetization in incompressible isotropic hard magnetorheological elastomers
Journal of the Mechanics and Physics of Solids, ISSN: 0022-5096, Vol: 191, Page: 105764
2024
- 7Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recent studies on magnetically hard, particle-filled magnetorheological elastomers ( h -MREs) have revealed their stretch-independent magnetization response after full pre-magnetization. We discuss this phenomenon, focusing on incompressible, isotropic, particle-filled h -MREs. We demonstrate that the fully dissipative model of Mukherjee et al. (2021) for arbitrary loads can be reduced, under physically consistent assumptions, to the energetic model of Yan et al. (2023), but not that of Zhao et al. (2019). The latter two are valid for small magnetic fields around an already known pre-magnetized state. When the pre-magnetized h− MRE undergoes non-negligible stretching, the Zhao et al. (2019) model yields predictions that disagree with experiments due to its inherent stretch-dependent magnetization response. In contrast, the Mukherjee et al. (2021) and Yan et al. (2023) models are able to accurately capture this important feature present in pre-stretched h -MREs. However, for inextensible slender structures under bending deformation, where stretching is negligible, the Zhao et al. (2019) model provides satisfactory predictions despite its underlying assumptions. Our analysis reveals that, in the fully dissipative model, magnetization can be related to an internal variable but cannot be formally used as one, except for ideal magnets, and is subject to constitutive assumptions. Furthermore, the magnetization vector alone is insufficient to describe the magnetic response of an MRE solid; the introduction of one of the original Maxwell fields is necessary for a complete representation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022509624002308; http://dx.doi.org/10.1016/j.jmps.2024.105764; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197773655&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0022509624002308; https://dx.doi.org/10.1016/j.jmps.2024.105764
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know