Novel bionanocomposite of polycaprolactone reinforced with steam-exploded microfibrillated cellulose modified with ZnO
Journal of Materials Research and Technology, ISSN: 2238-7854, Vol: 13, Page: 1324-1335
2021
- 13Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Polycaprolactone (PCL) bionanocomposites reinforced with microfibrillated cellulose (MFC), either plain or modified with 2 wt% of zinc oxide (ZnO) nanoparticles, were first time developed for possible application as multifunctional packing. The MFC was obtained by an alkali treatment, a steam explosion process, and ZnO modification applied to parchment (PAR), a husk waste from the coffee industry. X-ray diffraction (XDR), thermogravimetric analysis (TGA/DTG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile tests, and CO 2 permeability characterized the MFCs and the bionanocomposites. As for the MCFs, the crystallinity index of 50.6% measured by XRD for the plain PAR fiber increases with the combined alkaline treatment and steam explosion (CFA/EXP) to 68.2%, and further with ZnO modification (ZnO-CFA/EXP) to 80.1%. TGA/DTG displays a rising onset of thermal degradation from 214 to 306 °C, as well as maximum degradation rate from 330 to 350 °C, for PAR and ZnO-CFA/EXP, respectively. Regarding the nanocomposites, the addition of 3 wt% of alkali/steam explosion and ZnO-modified CFA/EXP contributes to enhancing thermal stability. Tensile tests disclosed improved mechanical properties of the novel nanocomposites as compared to the PCL matrix. In particular, Young's modulus rose from 88.5 to 169.5 MPa for the plain PCL and PCL reinforced with 3(ZnO-CFA/EXP), respectively. SEM images evidenced the participation of cellulose micro and nanofibrils in the PCL matrix. Approximately 20% reduction in the CO 2 permeability coefficient of both PCL and its 3CFA/EXP nanocomposite compared with 3(ZnO-CFA/EXP) proved that the ZnO nanoparticles provide a gas barrier to the nanocomposite, a convenient property for food packing.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S223878542100483X; http://dx.doi.org/10.1016/j.jmrt.2021.05.043; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159769904&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S223878542100483X; https://dx.doi.org/10.1016/j.jmrt.2021.05.043
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know