Effects of Mo equivalent on the phase constituent, microstructure and compressive mechanical properties of Ti–Nb–Mo–Ta alloys prepared by powder metallurgy
Journal of Materials Research and Technology, ISSN: 2238-7854, Vol: 16, Page: 588-598
2022
- 25Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Ti-(0–30)Nb-(2–11)Mo-3.5Ta (wt.%) alloys with the composition interval of 5.0 wt.% for Nb and 3.0 wt.% for Mo were prepared by hot isostatic pressing. The Ti–Nb–Mo–Ta alloys with high compressive strength and favorable ductility were obtained, which enabled the alloys to be used as novel structural or biomedical materials. The phase constituent, microstructure, and compressive properties were investigated. Although the compressive yield strength and the strain at failure showed different correlations to the Nb and Mo content, respectively, the two mechanical property parameters both showed distinctly monotonic correlations to the Mo equivalent. With the increasing Mo equivalent, the content of the α phase decreased, while that of the β phase increased. Simultaneously, the yield strength of the Ti–Nb–Mo–Ta alloys decreased, while the strain at failure increased. Quantitative analyses were then implemented on the grain refinement strengthening, the second-phase strengthening of the α phase, and the solid solution strengthening of the Nb and Mo atoms. After comparing the separate contributions of the above determining factors, it was confirmed that the second-phase strengthening was the dominating mechanism for improving the mechanical properties of the powder metallurgic Ti–Nb–Mo–Ta alloys.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2238785421014976; http://dx.doi.org/10.1016/j.jmrt.2021.12.054; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121712558&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2238785421014976; https://dx.doi.org/10.1016/j.jmrt.2021.12.054
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know