Dynamic deformation behavior of a FeCrNi medium entropy alloy
Journal of Materials Science & Technology, ISSN: 1005-0302, Vol: 100, Page: 120-128
2022
- 44Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations44
- Citation Indexes44
- 44
- CrossRef1
- Captures33
- Readers33
- 33
Article Description
Deformation behavior of a FeCrNi medium entropy alloy (MEA) prepared by powder metallurgy (P/M) method was investigated over a wide range of strain rates. The FeCrNi MEA exhibits high strain-hardening ability, which can be attributed to the multiple deformation mechanisms, including dislocation slip, deformation induced stacking fault and mechanical twinning. The shear localization behavior of the FeCrNi MEA was also analyzed by dynamically loading hat-shaped specimens, and the distinct adiabatic shear band cannot be observed until the shear strain reaches ~14.5. The microstructures within and outside the shear band exhibit different characteristics: the grains near the shear band are severely elongated and significantly refined by dislocation slip and twinning; inside the shear band, the initial coarse grains completely disappear, and transform into recrystallized ultrafine equiaxed grains by the classical rotational dynamic recrystallization mechanism. Moreover, microvoids preferentially nucleate in the central areas of the shear band where the temperature is very high and the shear stress is highly concentrated. These microvoids will coalesce into microcracks with the increase of strain, which eventually leads to the fracture of the shear band.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1005030221005922; http://dx.doi.org/10.1016/j.jmst.2021.05.049; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85114421896&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1005030221005922; https://dx.doi.org/10.1016/j.jmst.2021.05.049; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7211949&internal_id=7211949&from=elsevier
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know