One step hot-pressing method for hybrid Li metal anode of solid-state lithium metal batteries
Journal of Materials Science & Technology, ISSN: 1005-0302, Vol: 153, Page: 32-40
2023
- 13Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Safety issues induced by infinite anode volume change and uncontrolled lithium (Li) dendrite growth have become the biggest obstacle to the practical application of Li metal batteries. In addition, the traditional rolling method makes it difficult to manufacture thin Li foil with high mechanical strength and low Li content. Herein, a three-dimensional (3D) lithophilic carbon paper/copper (Cu) current collector hybrid anode with ultra-low Li metal content is prepared by a hot-pressing method. The highly reversible and stable lithiophilic layer LiC x formed in situ by heating/pressing treatment provides abundant nucleation sites and reduces the Li nucleation overpotential, thereby effectively suppressing Li dendrite growth. Moreover, the volume change and pulverization problems of Li metal anode during deposition/stripping also can be accommodated by the 3D skeleton. The optimization effect has been directly confirmed by in-situ optical and ex-situ scanning electron microscope observation. Therefore, highly stable performance (158.4 mA h g −1 at 2 C after 200 cycles with a capacity retention of 95.24%) in Li@LCP-Cu||NCM811 coin cell can be achieved. Furthermore, the solid-state battery assembled with the hybrid anode, poly(vinylidene fluoride) (PVDF)-based polymer electrolyte and polyethylene oxide (PEO) interface functional layer also exhibits the best electrochemical and safety performance, which also proves that the Li@LCP-Cu anode has great potential for application in solid-state batteries.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1005030223001494; http://dx.doi.org/10.1016/j.jmst.2022.12.055; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150836828&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1005030223001494; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7523857&internal_id=7523857&from=elsevier; https://dx.doi.org/10.1016/j.jmst.2022.12.055
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know