PlumX Metrics
Embed PlumX Metrics

Tailored gradient nanocrystallization in bulk metallic glass via ultrasonic vibrations

Journal of Materials Science & Technology, ISSN: 1005-0302, Vol: 210, Page: 109-120
2025
  • 5
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

To advance materials with superior performance, the construction of gradient structures has emerged as a promising strategy. In this study, a gradient nanocrystalline-amorphous structure was induced in Zr 46 Cu 46 Al 8 bulk metallic glass (BMG) through ultrasonic vibration (UV) treatment. Applying a 20 kHz ultrasonic cyclic loading in the elastic regime, controllable gradient structures with varying crystallized volume fractions can be achieved in less than 2 s by adjusting the input UV energy. In contrast to traditional methods of inducing structural gradients in BMGs, this novel approach offers distinct advantages: it is exceptionally rapid, requires minimal stress, and allows for easy tuning of the extent of structural gradients through precise adjustment of processing parameters. Nanoindentation tests reveal higher hardness near the struck surface, attributed to a greater degree of nanocrystal formation, which gradually diminishes with depth. As a result of the gradient dispersion of nanocrystals, an increased plasticity was found after UV treatment, characterized by the formation of multiple shear bands. Microstructural investigations suggest that UV-induced nanocrystallization originates from local atomic rearrangements in phase-separated Cu-rich regions with high diffusional mobility. Our study underscores the tunability of structural gradients and corresponding performance improvements in BMGs through ultrasonic energy modulation, offering valuable insights for designing advanced metallic materials with tailored mechanical properties.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know