A multi-level action coupling reinforcement learning approach for online two-stage flexible assembly flow shop scheduling
Journal of Manufacturing Systems, ISSN: 0278-6125, Vol: 76, Page: 351-370
2024
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures12
- Readers12
- 12
Article Description
Multi-product centralized delivery and kitting assembly present significant challenges to hierarchical co-processing in multi-stage manufacturing systems. The combinations of priority dispatching rules at each level are transiently adaptive, and the performance in online scheduling deteriorates rapidly with changing environment. This paper investigates the selection of rule combinations for sustained high-performance responsive scheduling in two-stage flexible assembly flow shop scheduling problem with asynchronous execution and complex decision correlation. A Multi-Level Action Coupling Deep Q-Network (MALC-DQN) approach is proposed for adaptive integrated scheduling in hybrid processing and assembly shops. Firstly, the problem is skillfully established as an event-triggered integrated decision markov decision process. The prioritized batch experience replay mechanism is employed to retain the complete correlation information of key decision sequences. Then, coupling and sequence feature extraction modules are developed to enhance the agent’s ability to perceive execution process and the environment. Furthermore, the multi-level wait-limit mechanism and efficient action filtering mechanism are designed to mitigate ineffective waiting waste and action space explosion during learning. Finally, a series of sophisticated experiments are conducted to validate the effectiveness of the proposed methodology. In 20 actual instances of different sizes, MLAC-DQN outperformed its closest competitor, with a 26.6% improvement in average tardiness. Moreover, extraordinary robustness is demonstrated in 16 sets of experiments involving different configurations of resources, orders, and arrival concentration levels.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0278612524001699; http://dx.doi.org/10.1016/j.jmsy.2024.08.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85201695481&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0278612524001699; https://dx.doi.org/10.1016/j.jmsy.2024.08.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know