The effects of suspending fluid viscoelasticity on the mechanical properties of capsules and red blood cells in flow
Journal of Non-Newtonian Fluid Mechanics, ISSN: 0377-0257, Vol: 326, Page: 105215
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
The mechanical behavior of spherical capsules and red blood cells in shear and confined pressure-driven flow of polymeric fluids was studied computationally. In particular, we study the effect of suspending fluid elasticity on the steady mechanical behavior of spherical capsules and red blood cells suspended in an Oldroyd-B fluid, in dilute shear and confined pressure-driven flow, as a model system for dilute suspensions of capsules in polymeric fluids. We investigate the effects of suspending fluid elasticity at fixed capillary number on the capsule deformation, membrane tensions, and effective viscosity for a range of capsule capillary numbers. For both spherical capsules and red blood cells, capsule deformation was found to decrease with increasing fluid elasticity in shear flow, and increase in confined pressure-driven flow. The average membrane tension for spherical capsules was found to follow the same trends: decreasing in shear and increasing in pressure-driven flow; however, the average membrane tension for red blood cells had a less pronounced trend with fluid elasticity, which we attribute to the reduced volume of the red blood cell. On the other hand, the effective viscosity of the suspension was found to be non-monotonic with an increase in suspending fluid elasticity for both flows and particle types. The underlying mechanisms for these trends were investigated by comparing these capsule simulations to results from rigid spherical particles. These results indicate that the mechanical behavior of these dilute capsule suspensions can be qualitatively understood by examining the disturbance flow created by the introduction of rigid spherical particles, and the subsequent stress induced in the polymeric fluid to these disturbances.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0377025724000314; http://dx.doi.org/10.1016/j.jnnfm.2024.105215; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85186489331&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0377025724000314; https://dx.doi.org/10.1016/j.jnnfm.2024.105215
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know