PlumX Metrics
Embed PlumX Metrics

Role of refractory inclusions in the radiation-induced microstructure of APMT

Journal of Nuclear Materials, ISSN: 0022-3115, Vol: 505, Page: 165-173
2018
  • 8
    Citations
  • 0
    Usage
  • 24
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    8
    • Citation Indexes
      8
  • Captures
    24

Article Description

Kanthal APMT is a promising FeCrAl-based alloy for accident-tolerant fuel cladding because of its excellent high-temperature oxidation resistance. In this study, powder metallurgy Kanthal APMT alloy, neutron irradiated to 1.8 dpa at nominally 382 °C, was characterized. On-zone STEM imaging revealed that radiation-induced dislocation loops with Burgers vectors of a/2〈111〉 or a〈100〉 and black dots tended to agglomerate in the vicinity of refractory inclusions. The densities and sizes of these loops decreased with distance from the inclusion-matrix interfaces. In addition, high-resolution energy-dispersive X-ray spectroscopy mapping was used to determine the inclusions to be either yttrium- or silicon-rich, as well as to detect the radial distribution of radiation-enhanced α′ phase near these inclusions. A high density of randomly distributed Cr-rich α′ phase was found, regardless of the presence of inclusions. Results from this study provide insights into how microstructural features can locally tailor the radiation-induced defects in FeCrAl-based alloys.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know