Recrystallization of amorphous AlNbCr coatings irradiated with chromium ions
Journal of Nuclear Materials, ISSN: 0022-3115, Vol: 603, Page: 155449
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Applying an AlNbCr layer on the surface of Zr alloys significantly enhances the alloy resistance to oxidation and high-temperature corrosion. However, the effects of irradiation on AlNbCr coating remain largely unexplored. This work investigates the microstructural evolution of Cr ion-irradiated AlNbCr coatings under varying temperatures, utilizing bright-field transmission electron microscopy (TEM) observations and electron diffraction pattern analyses. With increasing Cr ion irradiation dose, the coatings gradually transitioned from an initial amorphous to a crystalline state. The onset of crystallization occurred earlier at higher temperatures, indicating that the crystallization process was significantly influenced by temperature. Moreover, the dynamic crystallization process of the crystalline structure was also analyzed, as well as the different irradiation responses at the Near-Interface Area (NIA) and Far-Interface Area (FIA). These findings provide new insights for understanding and optimizing the performance of AlNbCr coatings in high-irradiation environments.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know