Predicting the suitability of lateritic soil type for low cost sustainable housing with image recognition and machine learning techniques
Journal of Building Engineering, ISSN: 2352-7102, Vol: 29, Page: 101175
2020
- 5Citations
- 83Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
From a sustainability point of view, laterites-compressed earth bricks (LCEB) are a promising substitute for building structures in place of the conventional concrete masonry units. On the other hand, techniques for identifying and classifying laterites soil for compressed earth bricks (CEB) production are still relying on direct human expertise or ‘experts’. Human experts exploit direct visual inspection and other basic senses such as smelling, touching or nibbling to generate a form of binomial classification, i.e. suitable or unsuitable. The source of predictive power is otherwise supposed to be found in color, scent, texture or combinations of these. Lack of clarity regarding the actual method and the possible explanatory mechanisms lead to 1) difficulties to train other people into the skills and 2) might also add to apathy to using CEB masonry units for housing. Here we systematize the selection method of experts. We chose imaging analysis techniques based on 1) easiness in image acquisition (Digital Camera) and 2) availability of machine learning and statistical techniques. We find that most of the predictive power of the ‘expert’ can be packed into visual inspection by demonstrating that with image analysis alone we get a 98% match. This makes it practically unnecessary the study of any other ‘expert’ skills and provides a method to alleviate the housing problems dealing with material construction in the developing world.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352710219322065; http://dx.doi.org/10.1016/j.jobe.2020.101175; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078219510&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352710219322065; https://dx.doi.org/10.1016/j.jobe.2020.101175
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know