Thermo-catalytic co-pyrolysis of palm kernel shell and plastic waste mixtures using bifunctional HZSM-5/limestone catalyst: Kinetic and thermodynamic insights
Journal of the Energy Institute, ISSN: 1743-9671, Vol: 107, Page: 101194
2023
- 20Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Kinetic and thermodynamic parameters of catalytic co-pyrolysis of palm kernel shell (PKS) and high-density polyethylene (HDPE) with three different catalysts (zeolite HZSM-5, limestone (LS) and bifunctional HZSM-5/LS) using thermogravimetric analyser via nitrogen environment were studied. The experiments were carried out at different heating rates ranging from 10 to 100 K/min within temperature range of 50–900 °C. Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and modified Distributed Activation Energy Model (DAEM) methods were employed in this current study. The average E a for PKS, HDPE, PKS/HDPE (2:8) – HZSM-5, PKS/HDPE (2:8) – LS, PKS/HDPE (2:8) – HZSM-5/LS, PKS/HDPE (5:5) – HZSM-5/LS, PKS/HDPE (8:2) – HZSM-5/LS are 137.26–145.49, 247.73–250.45, 168.97–172.50, 149.74–152.79, 115.30–120.39, 124.36–129.41, 151.03–154.47 and 152.67–157.31 kJ mol −1, respectively. Among the different catalysts used, LS demonstrated the lowest average E a (151.30–120.39 kJ mol −1 ) and ΔH (109.65–114.74 kJ mol −1 ). Positive values for ΔH and ΔG were found for the catalytic co-pyrolysis of PKS/HDPE mixtures which indicates the process is in endothermic reaction and possess non-spontaneous nature. The kinetic and thermodynamic analyses revealed the potential of PKS and HDPE as a potential feedstock for clean bioenergy production.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1743967123000235; http://dx.doi.org/10.1016/j.joei.2023.101194; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147607417&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1743967123000235; https://dx.doi.org/10.1016/j.joei.2023.101194
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know