Liquid chromatography method with tandem mass spectrometry and fluorescence detection for determination of inflammatory biomarkers in gingival crevicular fluid as a tool for diagnosis of periodontal disease
Journal of Pharmaceutical and Biomedical Analysis, ISSN: 0731-7085, Vol: 212, Page: 114644
2022
- 5Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef5
- Captures17
- Readers17
- 17
Article Description
The new ultra-high performance liquid chromatography method with tandem mass spectrometry and fluorescence detection allowing fast, selective, and high-throughput analysis of neopterin, kynurenine, tryptophan, and creatinine in gingival crevicular fluid (GCF) has been optimized. Defining the pathophysiology of periodontal disease and identification of potential diagnostic test for active periodontitis remains a significant challenge in the field of oral disease diagnosis. Analysis of GCF provides a non-invasive means of evaluating the role of the host response in periodontal disease. In addition, the analysis of GCF provides an information about current inflammation level of sampled site/tooth. Determination of GCF inflammatory biomarkers such as neopterin, kynurenine, and tryptophan can contribute to diagnosis, evaluation of treatment, and progression of periodontal diseases such as gingivitis and periodontitis. The separation of target analytes was carried out using a column Kinetex™ Polar C18 100 Å, (100 × 3.0 mm) packed with 2.6 µm core-shell particles applying an elution with a gradient formed from 0.2% aqueous formic acid and 90% aqueous acetonitrile. Kynurenine, tryptophan, and creatinine were detected using mass spectrometry with electrospray ionization to improve the sensitivity while neopterin was detected using fluorescence detection. The separation of these four substances was achieved after using a very simple sample preparation technique convenient for small amount of biological sample. Only less than 20 µL sample was needed and the separation was completed in 4 min. MS/MS analysis was performed using multiple reaction monitoring (MRM) under a positive ionization mode. Deuterium labeled internal standard was used for the more precise quantification. The lower limits of quantification (LLOQ) for target analytes were 0.50 × 10–3 µmol/L for neopterin, 0.10 µmol/L for kynurenine, and 0.20 µmol/L for tryptophan and creatinine. The within-run and between-run accuracy were in a range of 96.67–114.77% for all quality controls and LLOQ of all analytes. Matrix effect, extraction recovery, and stability testing have all been investigated. The method was tested with real-life samples using GCF collected from patients suffering from periodontitis and from healthy controls. Neopterin levels in patients were significantly higher (P = 0.020) than in healthy subjects and indicate good potential of this method for using in evaluation of periodontal pathogenesis and healing outcomes following a treatment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0731708522000656; http://dx.doi.org/10.1016/j.jpba.2022.114644; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124177625&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35151070; https://linkinghub.elsevier.com/retrieve/pii/S0731708522000656; https://dx.doi.org/10.1016/j.jpba.2022.114644
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know