Electroless synthesis of nanostructured nickel and nickel–boron tubes and their performance as unsupported ethanol electrooxidation catalysts
Journal of Power Sources, ISSN: 0378-7753, Vol: 222, Page: 243-252
2013
- 84Citations
- 86Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Considering the low abundance of platinum group metals and the high catalytic performance of nickel for the oxidation of small organic molecules, nickel catalysts are promising substitutional materials for direct alcohol fuel cells. Despite the simplicity, good scalability and flexibility of electroless plating, reports on the fabrication of nickel-based catalysts with this method are rare, in particular regarding the deposition of pure nickel. To expand the existing synthetic repertoire, we developed an electroless plating bath allowing the homogeneous deposition of spiky nickel films on very complex shaped substrates. Nanostructured nickel and nickel–boron tubes were obtained by combination of the new and a borane-based plating reaction polymer templates, respectively. The composition, morphology and crystallinity of the products was comprehensively investigated with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Finally, the nickel and nickel–boron tubes were applied as unsupported electrocatalysts for the oxidation of ethanol (EtOH) in alkaline environment. Compared to a macroscopic reference, both of the nanostructured catalysts showed improved utilization of high EtOH concentrations and considerably increased oxidation activities, rendering the applied deposition reactions promising routes towards novel catalysts for direct alcohol fuel cells.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378775312013651; http://dx.doi.org/10.1016/j.jpowsour.2012.08.067; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84866293410&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378775312013651; https://dx.doi.org/10.1016/j.jpowsour.2012.08.067
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know