Surface and structural stabilities of carbon additives in high voltage lithium ion batteries
Journal of Power Sources, ISSN: 0378-7753, Vol: 227, Page: 211-217
2013
- 62Citations
- 76Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The stabilities of different conductive carbon additives have been systematically investigated in high voltage lithium ion batteries. It is found that the higher surface area of conductive additives leads to more parasitic reactions initiating from different onset voltages. A closer inspection reveals that for the low surface area carbon such as Super P, PF6− anions reversibly intercalate into carbon structure at around 4.7 V. For high surface area carbons, in addition to the electrolyte decomposition, the oxidation of functional groups at high voltage further increases the irreversible capacity and Li + ion consumption. Coulombic efficiency, irreversible capacity and cycling stability observed by using different carbon additives are correlated with their structure and surface chemistry, thus providing information for predictive selection of carbon additives in different energy storage systems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378775312017120; http://dx.doi.org/10.1016/j.jpowsour.2012.11.038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84870679828&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378775312017120; https://dx.doi.org/10.1016/j.jpowsour.2012.11.038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know