The effect of ink ball milling time on interparticle interactions and ink microstructure and their influence on crack formation in rod-coated catalyst layers
Journal of Power Sources, ISSN: 0378-7753, Vol: 583, Page: 233567
2023
- 12Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work investigates the influence of ballmilling (sometimes also referred to as jar roller milling) time on cathode catalyst layer (CL) inks and electrode properties using formulations and coating methods relevant for industrial manufacturing. Four CL inks with the same composition were milled for 24, 48, 72, or 96 h. Rheological investigation of these inks showed a reduction of elastic moduli and steady-shear viscosity with continuous ink milling, which is correlated to a decrease in particle-particle interactions as well as formation of smaller agglomerates. Optical microscopy (OM) analysis of the fabricated electrodes revealed a trend in surface crack formation; formulations milled for 24 h contained the lowest average surface crack area percentages of 0.370% at heavy-duty loadings of ∼0.300 mg Pt cm −2, compared to 2.418% for the ink milled for 96 h. Further characterization of the CL through transmission electron microscopy (TEM) imaging showed a decrease in the mean agglomerate and pore size with milling time. These smaller electrode features were consistent with reduced fracture resistance and, hence, development of larger stresses during drying. Our results highlight the need to consider ink processing as an important component in defect-free CL manufacturing.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378775323009436; http://dx.doi.org/10.1016/j.jpowsour.2023.233567; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171677166&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378775323009436; https://dx.doi.org/10.1016/j.jpowsour.2023.233567
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know