Ultra-stable trimetallic phosphide heterostructure with regulated electronic structure for overall water splitting at high current densities
Journal of Power Sources, ISSN: 0378-7753, Vol: 614, Page: 234986
2024
- 1Citations
- 2Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Investigators from China University of Petroleum Report New Data on Chemicals and Chemistry (Ultra-stable Trimetallic Phosphide Heterostructure With Regulated Electronic Structure for Overall Water Splitting At High Current Densities)
2024 SEP 12 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- Investigators publish new report on Chemicals and
Article Description
Developing ultra-stable electrocatalysts for highly efficient overall water splitting at high current density (HCD) is critical for renewable hydrogen/oxygen production in the industry. However, the most active electrocatalysts for large current-driven water splitting are seriously handicapped by insufficient electrical contact kinetics due to the intensive bubble overflow. Herein, we demonstrate the ultra-stable trimetallic phosphides of NiFeP/NiCoP catalysts on a hydrophilic Ni foam skeleton via a corrosion-hydrothermal-phosphating strategy. The optimized NiFeP/NiCoP catalyst stabilizes for 600 h at −1 A cm −2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution, and it only needs low overpotentials of 237 and 314 mV to drive HER and OER at 1 A cm −2, respectively. As expected, the optimized NiFeP/NiCoP electrode maintains 1000 h at 0.5 A cm −2 for water splitting, ranking among the top performers among reported catalysts. Such excellent performance could be attributed to the fast electron transfer for electrochemical reactions, the electron-deficient Fe/Ni sites contribute to forming robust metal oxyhydroxide during OER, and electron-rich Co sites facilitate H adsorption during HER. The findings present a highly promising candidate for ultra-stable non-noble metal electrocatalysts, offering a viable option for hydrogen/oxygen supply for fuel cells and metal-air batteries.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378775324009388; http://dx.doi.org/10.1016/j.jpowsour.2024.234986; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197565474&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378775324009388; https://dx.doi.org/10.1016/j.jpowsour.2024.234986
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know