Blending hydrogen in existing natural gas pipelines: Integrity consequences from a fitness for service perspective
Journal of Pipeline Science and Engineering, ISSN: 2667-1433, Vol: 3, Issue: 4, Page: 100141
2023
- 15Citations
- 72Captures
- 5Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
A tiny California town is set to be home to a controversial hydrogen experiment—and not everyone is happy about it
A small California town populated by Latino farmworkers where the average resident makes around $12,000 a year could be a testing ground for a controversial
Article Description
Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth, promotes subcritical cracking and decreases fracture toughness. In this regard, several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere, K IH, can be 50% or less than K IC, the fracture toughness measured in air. From a pipeline integrity perspective, fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size, as shown in this work, the effect of Hydrogen Embrittlement (HE) in the predicted failure pressure is largest when a failure occurs by a brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work, all those effects were quantified using a crack assessment methodology (level 2, API 579-ASME FFS) considering literature values for K IH and K IC reported for an API 5L X52 pipeline steel. To characterize different scenarios, various crack sizes were assumed, including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel Specified Minimum Yield Strength (SMYS). The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2667143323000331; http://dx.doi.org/10.1016/j.jpse.2023.100141; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85175681204&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2667143323000331; https://dx.doi.org/10.1016/j.jpse.2023.100141
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know