Optical properties of semi-transparent sensor covers determined from their spectral intensity distribution function
Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN: 0022-4073, Vol: 332, Page: 109292
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The optical properties of semi-transparent components used as multifunctional coatings or in various non-imaging devices are not always completely known a priori. The quality of plastic covers used in night sky brightness monitors, such as Sky Quality Meter (SQM), can deteriorate with age, causing initially transparent windows to become semi-transparent media that absorb and scatter light. We demonstrate here that the asymmetry parameter, single-scattering albedo, and volume extinction coefficient of such a diffusing optical element can be determined by measuring the light escaping from its outer interface. Here we develop a simple model that allows for retrieval of the above parameters and can be applied to characterize various semi-transparent materials. The method is demonstrated for a particle-doped polycarbonate and Poly(methyl methacrylate) flat-plates of different thicknesses illuminated by a white light source. The spectral intensity of transmitted radiation is analyzed at discrete scattering angles for two samples of nearly the same optical properties except for the scattering asymmetry parameter. The samples sharing a number of similarities provide an ideal tool to test the method, because the angular structure of the scattered light can be interpreted in terms of a single optical parameter (while holding all other factors equal or nearly equal). The method is useful for the optical diagnosis of covers on non-imaging devices as they age (e.g., SQMs). The optical properties of a plastic cover obtained from its measured spectral intensity distribution function are needed to interpret and correct the data gathered by still non-retired night sky scanners. Additionally, the method can assist in selecting the optimal optical covers for solar and other applications.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know