Syzygies, constant rank, and beyond
Journal of Symbolic Computation, ISSN: 0747-7171, Vol: 123, Page: 102274
2024
- 1Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
We study linear PDE with constant coefficients. The constant rank condition on a system of linear PDEs with constant coefficients is often used in the theory of compensated compactness. While this is a purely linear algebraic condition, the nonlinear algebra concept of primary decomposition is another important tool for studying such system of PDEs. In this paper we investigate the connection between these two concepts. From the nonlinear analysis point of view, we make some progress in the study of weak lower semicontinuity of integral functionals defined on sequences of PDE constrained fields, when the PDEs do not have constant rank.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0747717123000883; http://dx.doi.org/10.1016/j.jsc.2023.102274; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85178079357&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0747717123000883; https://dx.doi.org/10.1016/j.jsc.2023.102274
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know