On the connectedness of multistationarity regions of small reaction networks
Journal of Symbolic Computation, ISSN: 0747-7171, Vol: 125, Page: 102323
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A multistationarity region is the part of a reaction network's parameter space that gives rise to multiple steady states. Mathematically, this region consists of the positive parameters for which a parametrized family of polynomial equations admits two or more positive roots. Much recent work has focused on analyzing multistationarity regions of biologically significant reaction networks and determining whether such regions are connected; indeed, a better understanding of the topology and geometry of such regions may help elucidate how robust multistationarity is to perturbations. Here we focus on the multistationarity regions of small networks, those with few species and few reactions. For two families of such networks – those with one species and up to three reactions, and those with two species and up to two reactions – we prove that the resulting multistationarity regions are connected. We also give an example of a network with one species and six reactions for which the multistationarity region is disconnected. Our proofs rely on the formula for the discriminant of a trinomial, a classification of small multistationary networks, and a recent result of Feliu and Telek that partially generalizes Descartes' rule of signs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0747717124000270; http://dx.doi.org/10.1016/j.jsc.2024.102323; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189704048&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0747717124000270; https://dx.doi.org/10.1016/j.jsc.2024.102323
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know