First-principles calculations of structural, electronic, magnetic, thermoelectric, and thermodynamic properties of BaMn 2 P 2 in the Anti and ferromagnetic phase
Journal of Solid State Chemistry, ISSN: 0022-4596, Vol: 302, Page: 122388
2021
- 19Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The materials that possessing narrow band-gap had got great attention in the field of thermoelectric especially in the field of optoelectronics for a number of applications like as in infrared radiation detection. In this study, thermodynamical, optoelectronic and thermoelectric properties of BaMn 2 P 2 have been studied using density functional theory (DFT) calculations. We did different sides e.g., for the nonmagnetic, antiferromagnetic, and ferromagnetic phase. The antiferromagnetic study directs narrow bandgap (less than 1 eV, closed results with the literature value) and upright optoelectronic and thermoelectric properties. Optical spectra display that absorption lies in visible as well as in UV region of the radiation. As a result, it looks to have probable applications in optoelectronics. Thermoelectric properties indulged the semiconducting nature with high Seebeck coefficient and dominant character of p-type charge carriers. Furthermore, we have computed both pressure and temperature-dependent thermodynamic parameters for this compound using quasi-harmonic Debye approximation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022459621004333; http://dx.doi.org/10.1016/j.jssc.2021.122388; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85109466319&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0022459621004333; https://dx.doi.org/10.1016/j.jssc.2021.122388
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know