Evolution of cytoplasmic sex ratio distorters: Effect of paternal transmission
Journal of Theoretical Biology, ISSN: 0022-5193, Vol: 266, Issue: 1, Page: 79-87
2010
- 8Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef6
- Captures19
- Readers19
- 19
Article Description
Eukaryotic organisms carry various genetic factors the so-called cytoplasmic genetic elements (CGEs), in their cytoplasm. Numerous examples are known in which CGEs possess the ability to control sex determination of their host organisms and cause sex ratio distortion (SRD). In general, CGEs are inherited maternally from female hosts, via egg cytoplasm to offspring. Thus, the elements tend to evolve abilities to avoid entrance into “dead-end” males. Previous theoretical studies have revealed that, as long as maternal transmission is perfect, CGEs evolve the highest levels of ability to cause SRD. However, it is recently reported that some CGEs transmit from male to offspring through infection to female in mating. This raises the question of how such a paternal contribution alters selective forces and SRD evolution. In the present study, the evolutionary process of SRD ability of CGEs was analyzed theoretically. The main finding is that paternal transmission results in evolution towards intermediate levels of SRD. Further, coexistence was observed of different CGEs inducing different levels of SRD. These results point to the importance of paternal transmission in the evolution of CGEs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022519310003085; http://dx.doi.org/10.1016/j.jtbi.2010.06.018; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77954055873&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/20558180; https://linkinghub.elsevier.com/retrieve/pii/S0022519310003085; https://dx.doi.org/10.1016/j.jtbi.2010.06.018
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know