Highly efficient iodine capture and selective adsorption and removal of cationic dyes by using a copper-based coordination polymer decorated over graphene oxide and carbon nanotubes
Journal of Water Process Engineering, ISSN: 2214-7144, Vol: 69, Page: 106569
2025
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study focuses on synthesizing hybrid nanocomposites (HNCs) through a one-step solvothermal method, combining highly crystalline and evenly dispersed copper-based coordination polymer (Cu-CP), graphene oxide (GO), and carbon nanotubes (CNTs). Extensive characterization using elemental analysis, SEM, TEM, EDX, XRD, FT-IR, Raman spectroscopy, TGA, and crystallographic studies confirm the properties of the nanocomposites, with PXRD investigation supporting their clear crystalline structure. Morphological and elemental studies reveal effective adsorption of copper-benzoic acid-containing Cu-CP onto GO and CNT substrates. The synthesized nanocomposites exhibit superior adsorption capacity for iodine (I 2 ), a model radioactive pollutant, attributed to decreased CP size and larger surface area. The strong affinity for I 2 arises from various interactions, including conjugated π-electron aromatic systems and halogen bonds. Cu-CP, Cu-CP@GO, and Cu-CP@CNT adsorbents efficiently extract toxic iodine from hexane solution, achieving a substantial capture capacity of 347.85 mg/g over 24 h. In the vapor phase, Cu-CP@GO exhibits an even higher capacity (951.52 mg/g within 25 h). Moreover, the application of Cu-CP, Cu-CP@GO, and Cu-CP@CNT in environmental protection showcases their efficacy in removing cationic and anionic dyes, particularly highlighting remarkable cationic dye selectivity through cation-π and π-π interactions. This research underscores the promising potential of these HNCs in addressing environmental challenges and pollutant remediation.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know