Learning discriminative domain-invariant prototypes for generalized zero shot learning
Knowledge-Based Systems, ISSN: 0950-7051, Vol: 196, Page: 105796
2020
- 13Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Zero-shot learning (ZSL) aims to recognize objects of target classes by transferring knowledge from source classes through the semantic embeddings bridging. However, ZSL focuses the recognition only on unseen classes, which is unreasonable in realistic scenarios. A more reasonable way is to recognize new samples on combined domains, namely Generalized Zero Shot Learning (GZSL). Due to the fact that the source domain and target domain are disjoint and have unrelated classes potentially, ZSL and GZSL often suffer from the problem of projection domain shift. Besides, some semantic embeddings of prototypes are very similar, which makes the recognition less discriminative. To circumvent these issues, in this paper, we propose a novel method, called Learning Discriminative Domain-Invariant Prototypes (DDIP). In DDIP, both target and source domains are combined and projected into a hyper-spherical space, which is automatically learned by a regularized dictionary learning. In addition, an orthogonal constraint is employed to the latent hyper-spherical space to ensure all the class prototypes, including seen classes and unseen classes, to be orthogonal to each other to make them more discriminative. Extensive experiments on four popular benchmark and a large-scale datasets are conducted on both GZSL and standard ZSL settings, and the results show that our DDIP can outperform the state-of-the-art methods.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0950705120301866; http://dx.doi.org/10.1016/j.knosys.2020.105796; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85082522037&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0950705120301866; https://dx.doi.org/10.1016/j.knosys.2020.105796
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know