Extracting data models from background knowledge graphs
Knowledge-Based Systems, ISSN: 0950-7051, Vol: 237, Page: 107818
2022
- 4Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Knowledge Graphs have emerged as a core technology to aggregate and publish knowledge on the Web. However, integrating knowledge from different sources, not specifically designed to be interoperable, is not a trivial task. Finding the right ontologies to model a dataset is a challenge since several valid data models exist and there is no clear agreement between them. In this paper, we propose to facilitate the selection of a data model with the RICDaM (Recommending Interoperable and Consistent Data Models) framework. RICDaM generates and ranks candidates that match entity types and properties in an input dataset. These candidates are obtained by aggregating freely available domain RDF datasets in a knowledge graph and then enriching the relationships between the graph’s entities. The entity type and object property candidates are obtained by exploiting the instances and structure of this knowledge graph to compute a score that considers both the accuracy and interoperability of the candidates. Datatype properties are predicted with a random forest model, trained on the knowledge graph properties and their values, so to make predictions on candidate properties and rank them according to different measures. We present experiments using multiple datasets from the library domain as a use case and show that our methodology can produce meaningful candidate data models, adaptable to specific scenarios and needs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0950705121010145; http://dx.doi.org/10.1016/j.knosys.2021.107818; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121318997&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0950705121010145; https://dx.doi.org/10.1016/j.knosys.2021.107818
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know