Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions
Knowledge-Based Systems, ISSN: 0950-7051, Vol: 261, Page: 110199
2023
- 58Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Since classical deep learning (DL) techniques are hungry for massive data and suffer from domain shift, domain adaptation (DA) methods are broadly adopted in prognostics and health management (PHM) to align source and target domains. However, DA relies on target datasets collected in advance, which are not always available in practice. In this paper, a domain generalization (DG) approach, which learns from multiple source domains and generalizes well to unseen domains, is introduced for remaining useful life (RUL) prediction of bearings under unseen operating conditions. Specifically, we propose an adversarial out-domain augmentation (AOA) framework to generate pseudo-domains, thereby increasing the diversity of available samples. Hence, a generator is trained in an adversarial manner to generate augmented pseudo-domains by maximizing the domain discrepancy of the latent representations. In addition, we add manifold and semantic regularization to its objective function to ensure the consistency of the pseudo-domains. Trained with these available domains, a task predictor can improve the generalization in inaccessible target domain. Based on this, we provide a specific implementation of AOA-based RUL prediction for DG and validate its effectiveness and superiority using experimental datasets.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0950705122012953; http://dx.doi.org/10.1016/j.knosys.2022.110199; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85144617755&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0950705122012953; https://dx.doi.org/10.1016/j.knosys.2022.110199
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know