An immune inspired multi-agent system for dynamic multi-objective optimization
Knowledge-Based Systems, ISSN: 0950-7051, Vol: 262, Page: 110242
2023
- 4Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this research, an immune inspired multi-agent system (IMAS) is proposed to solve optimization problems in dynamic and multi-objective environments. The proposed IMAS uses artificial immune system metaphors to shape the local behaviors of agents to detect environmental changes, generate Pareto optimal solutions, and react to the dynamics of the problem environment. Apart from that, agents enhance their adaptive capacity in dealing with environmental changes to find the global optimum, with a hierarchical structure without any central control. This study used a combination of diversity-, multi-population- and memory-based approaches to perform better in multi-objective environments with severe and frequent changes. The proposed IMAS is compared with six state-of-the-art algorithms on various benchmark problems. The results indicate its superiority in many of the experiments.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0950705122013387; http://dx.doi.org/10.1016/j.knosys.2022.110242; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85145978854&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0950705122013387; https://dx.doi.org/10.1016/j.knosys.2022.110242
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know