A graph-attention based spatial-temporal learning framework for tourism demand forecasting
Knowledge-Based Systems, ISSN: 0950-7051, Vol: 263, Page: 110275
2023
- 12Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Accurate tourism demand forecasting can improve tourism experiences and realize smart tourism. Existing spatial–temporal tourism demand forecasting models only explore pre-specified and static spatial connections across regions without considering multiple or dynamic spatial connections; however, this is not sufficient for modeling actual tourism demand. In this paper, we propose a graph-attention based spatial–temporal learning framework for tourism demand forecasting. A weight-dynamic multi-dimensional graph is organized to embed multiple explicit dynamic spatial connections and provide a node attribute sequence for learning implicit dynamic spatial connections. We further propose a heterogeneous spatial–temporal graph-attention network (called HSTGANet), which is effective in handling both explicit and implicit dynamic spatial connections, learning high-dimensional spatial–temporal features, and forecasting tourism demand. Experimental results demonstrate the effectiveness of the proposed model over baseline models in forecasting the tourism demand for six regions of Wanshan Archipelago in Zhuhai, China, and indicate that the proposed spatial–temporal learning framework may provide useful insights for developing more effective models for other spatial–temporal forecasting problems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0950705123000254; http://dx.doi.org/10.1016/j.knosys.2023.110275; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85146049921&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0950705123000254; https://dx.doi.org/10.1016/j.knosys.2023.110275
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know