High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes
Life Sciences, ISSN: 0024-3205, Vol: 241, Page: 117148
2020
- 211Citations
- 92Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations211
- Citation Indexes211
- 211
- CrossRef111
- Captures92
- Readers92
- 92
- Mentions1
- News Mentions1
- 1
Most Recent News
Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate
Introduction Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe, adverse event.1 In 2022, the American Association of Oral and Maxillofacial Surgeons (AAOMS) updated
Article Description
Mitochondria are fascinating structures of the cellular compartments that generate energy to run the cells. However, inherent disorders of mitochondria due to diabetes can cause major disruption of metabolism that produces huge amount of reactive oxygen species (ROS). Here we study the elevated level of ROS provoked by high glucose (HG) environment triggered mitochondrial dysfunction, inflammatory response and apoptosis via stress signalling pathway in keratinocytes. Our results demonstrated that elevated glucose level in keratinoctes, increase the accumulations of ROS and decrease in cellular antioxidant capacities. Moreover, excess production of ROS was associated with mitochondrial dysfunction, characterized by loss of mitochondrial membrane potential (ΔΨm), increase in mitochondrial mass, alteration of mitochondrial respiratory complexes, cytochrome c (Cyt c) release, decrease in mitochondrial transcription factor A (TFAM) and increase in mitochondrial DNA (mtDNA) fragmentation. Damaged mtDNA escaped into the cytosol, where it engaged the activation of ERK1/2, PI3K/Akt, tuberin and mTOR via cGAS-STING leading to IRF3 activation. Pre-treatment of pharmacological inhibitors, ERK1/2 or PI3K/Akt suppressed the IRF3 activation. Furthermore, our results demonstrated that activation of IRF3 in HG environment coinciding with increased expression of inflammatory mediators. Excess production of ROS interfered with decreased in cell viability, increased lysosomal content and expression of FoxOs, leading to cell cycle deregulation and apoptosis. Pre-treatment of N -acetyl-l-cysteine (NAC) significantly reduced the HG-induced cell cycle deregulation and apoptosis in keratinocytes. In conclusion, increased oxidative stress underlies the decrease in antioxidant capacities and mitochondrial dysfunction in HG environment correlate with inflammation response and apoptosis via ERK1/2-PI3K/Akt-IRF3 pathway in keratinoctes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0024320519310768; http://dx.doi.org/10.1016/j.lfs.2019.117148; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076153264&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31830478; https://linkinghub.elsevier.com/retrieve/pii/S0024320519310768; https://dx.doi.org/10.1016/j.lfs.2019.117148
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know