The initial slab rollback of Neo-Tethys Ocean: Constrain from Gongga adakitic rocks and enclaves in the late Cretaceous
Lithos, ISSN: 0024-4937, Vol: 440, Page: 107050
2023
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Neo-Tethys oceanic slab rollback and ridge subduction are two competing geodynamic processes responsible for the early stage of late Cretaceous magmatic activity. The spatial and temporal distribution of geochemical variability in igneous rocks can be used for reconstructing specific geodynamic events. We presented the whole-rock geochemistry, zircon U Pb ages, mineral chemistry data of the Gongga adakitic host rocks and coeval dioritic enclaves emplaced in the southern Lhasa terrane. The Gongga adakitic host rocks have low Mg # (43.7– 44.9), but high in K 2 O/Na 2 O > 0.6, indicating they may be derived from the juvenile lower crust. According to geochemical modeling, the adakitic host rocks were formed by about 40% partial melting of the metamorphic gabbroic diorite with adakitic affinity. The typical magmatic texture and reverse oscillatory zoning of plagioclase in dioritic enclaves imply that they may be generated during the process of magma mixing. By the integrated analysis of new geochemical data of the Gongga intrusive rocks and compiled spatio-temporal distribution and geochemical data of Cretaceous magmatism in the southern Lhasa terrane, we proposed that the initial Neo-Tethyan oceanic slab rollback occurred at ∼98 Ma, causing the production of the Gongga host rocks and magmatic encalves. The Neo-Tethys ridge subduction and slab rollback jointly took part in the production of the magmatic flare-up during the late Cretaceous.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0024493723000348; http://dx.doi.org/10.1016/j.lithos.2023.107050; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147818007&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0024493723000348; https://dx.doi.org/10.1016/j.lithos.2023.107050
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know