Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens
LWT - Food Science and Technology, ISSN: 0023-6438, Vol: 63, Issue: 2, Page: 1001-1007
2015
- 175Citations
- 189Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Microbial biofilms, which characterized by their resistance to the traditional antimicrobials, are considered as a renewable source of contamination by pathogens. As alternative antimicrobial and antibiofilm agent selenium nanoparticles (SeNPs) were biosynthesized by treatment of 1 mM SeO 2 with the free-cell supernatant of Bacillus licheniformis isolated from food wastes. The biosynthesized SeNPs were characterized by their spherical shape with diameter range of 10–50 nm and a well-defined absorption peak at 263 nm in UV–vis spectra. The biosynthesized SeNPs were used to control growth and biofilm formation by six foodborne pathogens including Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella Typhimurium, and Salmonella Enteritidis. The MIC 90 of SeNPs against all tested bacteria was 25 μg/mL, whereas the antibiofilm concentration was 20 μg/mL against all bacteria, except B. cereus. Although the biogenic SeNPs had antimicrobial and antibiofilm effects, they did not show ability to remove the established biofilm up to 50 μg/mL. The concentration of 75 μg/mL showed slight effect on removing the established biofilm. No toxicity on Artemia larvae was demonstrated by SeNPs upto 100 μg/mL. In conclusion, SeNPs produced in the present study can be used as a promising agent for effectively preventing biofilm formation by foodborne pathogens.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002364381500239X; http://dx.doi.org/10.1016/j.lwt.2015.03.086; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84930379693&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S002364381500239X; https://dx.doi.org/10.1016/j.lwt.2015.03.086
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know