Physical modification caused by acoustic cavitation improves rice flour bread-making performance
LWT, ISSN: 0023-6438, Vol: 183, Page: 114950
2023
- 11Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Acoustic cavitation has been shown to cause physical damage and partial starch depolymerization in ultrasound-treated flours. However, the promising effects of this modification on bread-making performance of gluten-free flour are still unexplored. Based on this hypothesis, sonicated rice flour (2–20 min) was used to replace 30% native flour in the control formulation of gluten-free bread. Breadmaking performance was characterized by doughs' pasting, thermal, and rheological properties, and physical quality of breads. Ultrasonication time presented a direct correlation with particle fragmentation. Doughs’ rheology presented reduced tan(δ)₁ values (up to −11%) and improved recovery after the application of stress (up to +14%), denoting an enhanced elastic behavior with respect to the control dough. Rheo-fermentative tests demonstrated that ultrasonication accelerated the generation of CO 2 and its retention within the dough structure, as consequence of eased accessibility of yeast to simpler sugars after starch depolymerization. The small-size particles (∼10 μm) in ultrasonicated flours seem to have enhanced their Pickering emulsifying ability and led to breads with higher specific volumes (up to 24%), softer crumbs, and delayed hardening during storage. Ultrasonication, a low-cost technology, has been shown to significantly improve the fermentative and viscoelastic behavior of rice flour dough and its breadmaking performance.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0023643823005297; http://dx.doi.org/10.1016/j.lwt.2023.114950; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161073793&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0023643823005297; https://dx.doi.org/10.1016/j.lwt.2023.114950
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know