Efficient deep learning surrogate method for predicting the transport of particle patches in coastal environments
Marine Pollution Bulletin, ISSN: 0025-326X, Vol: 209, Issue: Pt B, Page: 117251
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Several coastal regions require operational forecast systems for predicting the transport of pollutants released during marine accidents. In response to this need, surrogate models offer cost-effective solutions. Here, we propose a surrogate modeling method for predicting the residual transport of particle patches in coastal environments. These patches are collections of passive particles equivalent to Eulerian tracers but can be extended to other particulates. By only using relevant forcing, we train a deep learning model (DLM) to predict the displacement (advection) and spread (dispersion) of particle patches after one tidal period. These quantities are then coupled into a simplified Lagrangian model to obtain predictions for larger times. Predictions with our methodology, successfully applied in the Dutch Wadden Sea, are fast. The trained DLM provides predictions in a few seconds, and our simplified Lagrangian model is one to two orders of magnitude faster than a traditional Lagrangian model fed with currents.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0025326X24012281; http://dx.doi.org/10.1016/j.marpolbul.2024.117251; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85208767745&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39547071; https://linkinghub.elsevier.com/retrieve/pii/S0025326X24012281; https://dx.doi.org/10.1016/j.marpolbul.2024.117251
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know