Experimental investigation of nonlinear springing of ultra-large container ship in regular waves
Marine Structures, ISSN: 0951-8339, Vol: 99, Page: 103697
2025
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The issue of ship structural fatigue strength caused by springing is receiving increasing attention from designers. To investigate nonlinear springing more precisely on ultralarge container ships that have large-opening structural characteristics, a new segmented ship model with a U-shaped backbone was designed and fabricated in this paper. The novel U-shaped backbone can simultaneously simulate the vertical, horizontal, and torsional stiffnesses as well as the shear center of a full-scale container ship. Measurements of the vertical and horizontal bending moments of the ship model were achieved by assessing the corresponding bending strains of the U-shaped backbone. Integration of the shear flow method was developed for direct measurements of torsional moments. This method was validated through the calibration of the U-shaped backbone. On the basis of the new segmented ship model, vertical, horizontal, and torsional nonlinear springing tests were conducted successfully for the 20000 TEU container ship in the seakeeping basin of the CSSRC, and their characteristics and mechanisms were investigated. The test results reveal that nonlinear springing is a special case of high-frequency vibration that is induced by the harmonic excitation force. The resonance frequency component of the vertical bending moment of the midship is almost 2.5–4.5 times the corresponding wave frequency component when the ship experiences double-frequency vertical nonlinear springing at high speed under different wave headings. The severity of torsional nonlinear springing is not as pronounced as that of vertical nonlinear springing.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know