Rich dynamics of a discrete two dimensional predator–prey model using the NSFD scheme
Mathematics and Computers in Simulation, ISSN: 0378-4754, Vol: 225, Page: 992-1018
2024
- 5Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we consider a two-species predator–prey model with Holling type III functional response and non-linear predator harvesting. The proposed model is discretized using a non-standard finite difference scheme (NSFD). The stability of different equilibrium points are analyzed. Also, the conditions of various types of bifurcations likely: Transcritical, Neimark–Sacker bifurcation (NSB), and Flip (Period doubling) bifurcation (PDB) have been established along with chaos control strategies. The numerical results indicate that the system exhibits different patterns of solutions, including single, two, and higher periodicity. Using Lyapunov exponents and bifurcation diagrams, chaotic solutions are verified. Two model parameters were drawn simultaneously in the attractor basin, which yielded different periodic solutions compared to the continuous dynamical system. Lastly, the pole placement method (PPM) has been used to control chaos in the proposed discrete ecological model.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S037847542300424X; http://dx.doi.org/10.1016/j.matcom.2023.09.024; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174062440&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S037847542300424X; https://dx.doi.org/10.1016/j.matcom.2023.09.024
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know