Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters
Mathematics and Computers in Simulation, ISSN: 0378-4754, Vol: 230, Page: 1-19
2025
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
To analyze and predict the evolution of contagion dynamics, fractional derivative modeling has emerged as an important technique. However, inferring the dynamical structure of fractional-order models with high degrees of freedom poses a challenge. In this paper, to elucidate the spreading mechanism and non-local properties of disease evolution, we propose a novel fractional-order SEIHDR epidemiological model with variable parameters, incorporating fractional derivatives in the Caputo sense. We compute the basic reproduction number by the next-generation matrix and establish local and global stability conditions based on this reproduction number. By using the fractional Adams–Bashforth method, we validate dynamical behaviors at different equilibrium points in both autonomous and non-autonomous scenarios, while qualitatively analyze the effects of fractional order on the dynamics. To effectively address the inverse problem of the proposed fractional SEIHDR model, we construct a fractional Physics-Informed Neural Network framework to simultaneously infer time-dependent parameters, fractional orders, and state components. Graphical results based on the COVID-19 pandemic data from Canada demonstrate the effectiveness of the proposed framework.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know