Control of shaping and thermal resistance of metakaolin-based geopolymers
Materials & Design, ISSN: 0264-1275, Vol: 116, Page: 374-385
2017
- 58Citations
- 100Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents results from experimental studies on the thermal resistance and dilatometry analysis of various geopolymer formulations, which were prepared by mixing alkaline solutions, metakaolin and reinforcements. Nine compositions were tested by dilatometric analysis and thermal resistance at high temperature (800 °C). Structural and microstructural analysis was conducted to verify the geopolymerization, and differential thermogravimetric analysis was performed to evaluate the nature of water, depending on the formulation. Some key parameters were identified as critical parameters that influenced the geopolymer properties, such as the nature (Na or K) and the molar concentration of the alkaline cation ([M] < 16 mol/L), the molar concentration of silicon ([Si] < 39 mol/L) and the alkaline metal to aluminum ratio (M/Al < 0.65). Finally, it was possible to arrange the various formulations in a ternary scheme as functions of the metal, aluminum and silicon concentrations. This scheme may represent a roadmap for controlling the thermal resistance of geopolymer materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0264127516315568; http://dx.doi.org/10.1016/j.matdes.2016.12.039; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85007188836&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0264127516315568; https://dx.doi.org/10.1016/j.matdes.2016.12.039
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know