Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications
Materials & Design, ISSN: 0264-1275, Vol: 189, Page: 108504
2020
- 48Citations
- 55Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multi-jet electrospinning arranged in an arc array with sheath gas has been developed for the high-efficiency production of nanofiber membranes. The arc array constrains the electric field interferences among multiple nozzles and the sheath gas in laminar flow overcomes the electric repulsive force among the jets. The stretching and focusing effect from the sheath gas reduces both the nanofiber diameter and the diameter range, which helps to realize the continuous stable multi-jet electrospinning to fabricate uniform nanofiber membranes. After the treatment of 98% concentrated sulfuric acid for the reactive exchange groups and a hot-pressing process, the membrane is then applicable to electrodialysis applications. Thanks to the net structure, there are many ion transmission passageways within the membrane, leading to the low membrane resistance and high ion transmission efficiency. Experimentally, the increase of membrane thickness results in the decrease of porosity, ion exchange capacity (IEC) and selective permeability and the increase in membrane resistance. The electrodialysis tests show good ion selection performance with a high desalinization ratio of NaCl solution.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S026412752030037X; http://dx.doi.org/10.1016/j.matdes.2020.108504; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85077996371&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S026412752030037X; https://dx.doi.org/10.1016/j.matdes.2020.108504
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know