Design and optimization of Metallic Foam Shell protective device against flying ballast impact damage in railway axles
Materials & Design, ISSN: 0264-1275, Vol: 196, Page: 109120
2020
- 35Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ballast impacts can initiate surface defects that cause abrupt failure of the axle and derailment of the railway vehicle. According to the Federal Railroad Administration the axle and bearing failure costs around 89 million dollars and causes 46 derailments in the US per year (2005–2010). In this study, the authors have suggested a novel protective mechanism (Metallic Foam Shell – MFS) by using a lightweight sandwich panel. At the first step, a preliminary study is conducted, followed up by the numerical simulations to determine the applicable materials. At the next step, experimental tests were performed to assess the efficiency of the suggested device against flying ballast impacts. An extended non-destructive (NDT) evaluation has been performed in order to find the most suitable technique for damage detection of the proposed device when on-service. The studied cases were GFRP and Aluminium sandwich panels, having an aluminium foam core with different densities and thicknesses. The results showed that the MFS can absorb up to 90% of the initial impact energy and significantly decrease the chance of rebounding impact to the other components. Moreover, the results were also analysed in order to propose the most reliable NDT method for this specific application.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0264127520306559; http://dx.doi.org/10.1016/j.matdes.2020.109120; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090560916&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0264127520306559; https://dx.doi.org/10.1016/j.matdes.2020.109120
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know