Construction of macroporous magnesium phosphate-based bone cement with sustained drug release
Materials & Design, ISSN: 0264-1275, Vol: 200, Page: 109466
2021
- 27Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Magnesium phosphate-based bone cements (MPBCs) have been widely applied in orthopedic and dental fields owing to their excellent self-setting ability and high strength. However, their lack of macroporosity and poor drug release properties restrict their use. In this study, we incorporated various degrees of cross-linking of gelatine microspheres (GM) into MPBC and improved the physicochemical and biocompatible properties, biodegradation and drug release behaviour of the composites. Diclofenac sodium (DS) was utilized as a model drug. Through experiments and observations, we found that the GM induced an adjustable setting time (12 min–16 min), high compression strength (23 MPa–58 MPa), abundant macropores (30.2%–37.8%) and sustained DS release with the double exponential biphasic kinetic model (more than 2 months) into the MPBC composites. Moreover, the sustained release of magnesium and calcium ions had a synergistic effect with GM on the proliferation, osteogenesis differentiation, mineralization ability and gene expression (COL I, OPN, and Runx2) of MC3T3-E1 cells. Subcutaneous implantation and histological analyses indicated that the MPBC-GM composites activated angiogenesis without inducing severe inflammatory reactions. In brief, we prepared biocompatible MPBC composites with adjustable physicochemical properties, formation of macropores, degradation and drug release behaviour.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0264127521000198; http://dx.doi.org/10.1016/j.matdes.2021.109466; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099518483&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0264127521000198; https://api.elsevier.com/content/article/PII:S0264127521000198?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0264127521000198?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.matdes.2021.109466
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know