Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study
Materials & Design, ISSN: 0264-1275, Vol: 202, Page: 109532
2021
- 67Citations
- 135Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We reveal high-fidelity new phase selection rules for high entropy alloys (HEAs) by combining CALPHAD calculations and the machine learning (ML) method. Employing Thermo-Calc and TCHEA3 database, we first generate more than 300,000 equilibrium phase data from 20 quinary families formed by the 8 elements of Al Co, Cr, Cu, Fe, Mn, Ni, and Ti, and choose initially 15 materials/physical descriptors. The eXtreme Gradient Boosting (XGBoost) method is then used to identify 5 most important descriptors that best delineate the single and mixed phases in the complex temperature-composition space of HEAs. The ML model trained by the 5 features is validated by 155 annealing experimental data points from 15 publications and then used to predict 213 new single-phase alloys with BCC and FCC structures of the alloy families of AlCrNiFeMn and AlCrCoNiFeTi. We also highlight the importance of equilibrium temperature and offer in-depth insights into the paradigm of composition-feature-phase of HEAs. On the basis of the 5 important features, we establish new phase selection rules for single FCC and BCC phases with a success rate above 90%, significantly outperforming all existing phase selection rules and providing a powerful tool for mapping single-phase in the complex temperature-composition space of HEAs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S026412752100085X; http://dx.doi.org/10.1016/j.matdes.2021.109532; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100372278&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S026412752100085X; https://dx.doi.org/10.1016/j.matdes.2021.109532
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know