Accelerated design of architectured ceramics with tunable thermal resistance via a hybrid machine learning and finite element approach
Materials & Design, ISSN: 0264-1275, Vol: 210, Page: 110056
2021
- 25Citations
- 51Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Topologically interlocked architectures can transform brittle ceramics into tougher materials, while making the material design procedure a cumbersome task since modeling the whole architectural design space is not efficient and, to a degree, is not viable. We propose an approach to design architectured ceramics using machine learning (ML), trained by finite element analysis data and together with a self-learning algorithm, to discover high-performance architectured ceramics in thermomechanical environments. First, topologically interlocked panels are parametrically generated. Then, a limited number of designed architectured ceramics subjected to a thermal load is studied. Finally, the multilinear perceptron is employed to train the ML model in order to predict the thermomechanical performance of architectured panels with varied interlocking angles and number of blocks. The developed feed-forward artificial neural network framework can boost the architectured ceramic design efficiency and open up new avenues for controllability of the functionality for various high-temperature applications. This study demonstrates that the architectured ceramic panels with the ML-assisted engineered patterns show improvement up to 30% in frictional energy dissipation and 7% in the sliding distance of the tiles and 80% reduction in the strain energy, leading to a higher safety factor and the structural failure delay compared to the plain ceramics.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0264127521006110; http://dx.doi.org/10.1016/j.matdes.2021.110056; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113778294&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0264127521006110; https://dx.doi.org/10.1016/j.matdes.2021.110056
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know